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Introduction 
 
The fast spread and impact of machine learning (ML) and artificial intelligence (AI) models to diverse areas 
of physical sciences indicate their tremendous potential to address critical issues and potential bottlenecks 
in the nuclear data pipeline. The nuclear data community has identified a number of key areas in which 
AI/ML advances already show substantial promise to make significant impacts, both in the short term and 
long into the future. By leveraging advances made in other areas of science and, simultaneously, driving 
innovations in AI/ML, we can address the needs of the community to provide more rapid, accurate, and 
robust evaluations, quicker compilation of both data and critical contextual information from published 
experimental work and optimal experimental design for validation. Additionally, AI/ML surrogate models 
may be used to incorporate more representational and realistic physics models into transport code 
simulations, as well as rapidly reproduce the results of complex multi-physics codes relevant for a wide 
range of applications. Targeted investments are needed now to fully realize the potential of AI/ML in 
nuclear data.  
 
A critical portion of this investment should be directed to fostering collaborations between nuclear 
researchers and experts in the AI/ML community, especially within the Department of Energy labs and 
universities. Through collaborations, more appropriate algorithms for solving critical research problems 
may be most efficiently determined and subsequently trained, tuned, and deployed for maximum scientific 
impact. While open source tools like TensorFlow, Keras, PyTorch, and scikit-learn are valuable because 
they can be used for rapid exploration of new and innovative ideas, in the hands of non-experts, they can 
yield biased results with unphysical properties. 
 
There are other areas for investment as well. To enhance the reproducibility of results, and to best leverage 
advancements across different areas of the pipeline, efforts to collect and share fitted models and data 
should be explored. By including notes on applicability and limitations of different AI/ML approaches, 
these collections may be more robust. Another focus area is on developing rigorous approaches for 
validating the trustworthiness of AI/ML methods in the nuclear data context, as these validations will be 
necessary before these tools can be deployed in certain applications where safety is paramount (e.g., nuclear 
energy, nuclear security). The integration of uncertainties arising from the use of AI/ML tools into the larger 
uncertainty quantification (UQ) process in nuclear data could be an essential ingredient of future validation 
efforts. Finally, advances in AI/ML should be considered a method for augmenting nuclear data expertise 
– to supplement the judgement and work of experts, not replace them.  
 
 



 

 2 
 

Evaluations and Processing 
 
Modern evaluations are built from a collection of disparate phenomenological models which are fit to 
experimental data.  Ideally, the best possible theoretical models of the underlying structure, reaction and 
fission physics would be included. However, while capable of capturing and predicting trends across the 
nuclear chart (i.e., correlations between observables), these theoretical models are computationally 
intensive and often lack the descriptive power and accuracy needed to reproduce experimental data. The 
consequence is that evaluation models have limited predictive power, which leads to progressively lower-
quality evaluations for unstable or difficult-to-measure nuclei where little or no data exists.  Machine 
learning has the potential to address this issue on multiple fronts. Emulators have already proven their 
usefulness in providing tremendous speedup of fundamental DFT and QMD calculations for mesoscopic 
material science and chemistry.  Such emulators could be used to address the extreme computational 
expense and permit the partial inclusion of models into modern evaluations. While present theoretical 
models could be insufficient for evaluations where a great deal of data exist, AI/ML may significantly 
enhance extrapolations to regions of the nuclear chart where little or no data exists.  Further, theoretical 
models will necessarily impart more physically correct correlations between observables, both in the sense 
that correlated observables are better described, and that the extracted covariance matrices better describe 
the relationships between different processes. 
 
The applications of machine learning continue from the specific nuclear reaction into validating the 
evaluation libraries in their entirety with respect to integral experiment and into processing those libraries 
for applications. Insight into the defects and missing important physics can be gained by studying libraries. 
Tools such as unsupervised learning have the potential to help identify new systematic trends in the nuclear 
data evaluations that may have been missed by human evaluators, and be a critical aid for enhancing or 
correcting our models and methodology.  Even in cases where we cannot correct our models, it opens the 
possibility to better account for their defects and avoid overfitting.  Machine learning may also enhance 
how we post-process and encode nuclear data for applications.  Two areas ripe for study are compressing 
post-processed libraries into a memory-limited form and building better/more adaptive multigroup cross 
sections.  This is particularly important as high-performance computing centers move toward more 
processing power with less memory. 
 
Experiments / Compilations 
 
The compilation and analysis of experimental data is a crucial step in the nuclear data evaluation pipeline. 
Without useful, accurate, well-documented and vetted experimental data sets, the resulting evaluated files 
can lead to significantly erroneous and biased results that are further propagated to applications – with 
possibly disastrous consequences. The EXFOR experimental data library constitutes a unique and valuable 
resource for the nuclear data community. However, in its current form, it does not yet satisfy all the needs 
of evaluators, especially concerning automatic reading of large amout of data and ML-supported 
interpretation thereof, a situation that is exacerbated if modern ML/AI algorithms are to be unleashed on it. 
 
To make large-scale machine learning with reaction data possible, the community will need to develop a 
new database to store the data sets that have been vetted, standardized, and – in some cases – adjusted. The 
final version of the data sets in this database should be standardized (in formatting, metadata tags and 
uncertainties), quality-verified (checked for compilation errors and experimental biases and updated to new 
standard and structure values), and well-characterized (uncertainties standardized using experimental 
uncertainty templates).  The compilation of data into this new database should be based on communication 
between the evaluator or qualified data users, the original compilers, and the authors of the published work 
to ensure that the highest quality database is created.  To streamline data vetting, natural language 
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processing (NLP) tools need to be developed to simplify the correction of compilation errors, and available 
data quality verification software should be utilized. 
 
With targeted investments, NLP compilation of nuclear data may become the norm.  However, there are 
many challenges to automated NLP, e.g., processing errors and issues with PDF files. While there have 
been recent developments with NLP tools for other scientific fields, further development is needed for table 
and figure processing, for incorporating a lexicon of nuclear data terms and symbols, and for developing 
an interface for expert validation to leverage automated NLP processing capabilities in nuclear data. 
 
Validation 
 
Validation of nuclear data is a key pillar in the nuclear data pipeline, and the potential for AI/ML to impact 
the validation process is significant. AI/ML has the potential to process complex relationships in the large 
spaces spanned both by nuclear data and simulated integral experiments. It may be invaluable in directing 
the design of optimal validation experiments to probe the potential deficiencies in ND models and 
evaluation, utilizing iterative feedback in the estimation process. Additionally, the incorporation of 
information about the inability to predict observations in benchmarks across applications and utilize this 
information holistically using AI/ML may reduce potentially compensating errors due to adjustment to a 
particular application. This approach will require the sharing of benchmark data and metadata across 
application domains in a way that allows relationships between nuclear data and discrepancies to be 
captured by AI/ML, while respecting potential limitations due to information sharing related to security and 
intellectual property. 
 
To build toward that goal, advances can be made now in both AI/ML-guided optimal experimental design 
and ML-guided search for deficiencies in nuclear data estimates with respect to integral experiments. The 
areas of sequential design/optimization using Gaussian processes and deep neural networks show exciting 
promise to couple with physics models for searching a wide space of experimental designs. Additionally, 
advancements in reinforcement learning show tremendous potential in sequential decision-making tasks 
that may be applicable in this area as well. ML prediction models are well known to capture complex 
relationships between input features to the model and the target of prediction to obtain impressive 
accuracies. Utilizing tools for ML interpretability, the relationships learned by the model can be 
communicated to nuclear data experts to allow for directed investigation into potentially unexpected 
deficiencies in nuclear data.  
 
Synergistically, the expertise developed over decades for nuclear data validation can also drive 
developments of approaches to validation of AI/ML methods that are desperately needed in this community 
and beyond. Given the importance of nuclear data in safety and security applications, building trust in the 
stability and robustness of results obtained through deployment of AI/ML methods is critical.  
Advancements in interpretability ensures that the way in which the AI/ML results are obtained avoid relying 
on spurious relationships in the data, while showing results are stable to variations in data, to the ML fitting 
process, and across implementation in the community will ensure that AI/ML results are trustworthy.  
 
Applications 
 
Specific applications, such as detector model responses or correlated signatures of nuclear physics 
processes (e.g., fission) cannot rely solely on average quantities as tabulated in ENDF/GNDS-formatted 
libraries. Instead, they require the incorporation of complex physics models into transport simulations, 
significantly enhancing the computational cost of such calculations. Emulators developed from these more 
fundamental calculations could be developed and render such simulations tractable, opening a new frontier 
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for transport code capabilities. Such developments would complement, not replace, the existing tabulated 
nuclear data libraries. 
 
Another application of interest is the identification of features and hidden patterns in the complex, highly 
multi-dimensional and correlated phase space of nuclear data, especially as used in the simulation of various 
nuclear applications, including critical and sub-critical assemblies, pulsed spheres, radio-chemistry, reactor 
designs, and others. ML algorithms associated with well-structured databases of nuclear data and nuclear 
applications provide an unprecedented opportunity to pull out features and parameters in a comprehensive 
manner, providing feedback on data evaluations from a wide range of diverse applications. This is an 
extremely difficult task for individual researchers who are often experts in only pieces of this giant puzzle, 
and who tend to find practical solutions to problems of limited scope, which can in some cases lead to 
compensating errors in the nuclear data that negatively impact other applications. 
 
AI/ML methods in the development/training of surrogate models also have the potential to contribute to a 
range of nuclear data applications.  First, fast surrogate models have the potential to significantly increase 
the computational capacity for fast propagation of uncertainties through multi-physics problems.  In 
particular, multi-scale (multi-fidelity) approaches are promising, where several surrogate models, differing 
in fidelity and speed, can be combined to cover a wide range of simulations. Furthermore, such multi-scale 
surrogate models can be used to study a very wide design space in the optimization of integral experiments.  
By combining these surrogates with targeted full-fidelity simulations, the development of on-the-fly 
learning algorithms may be possible. 
 
Conclusion 
 
AI/ML approaches have tremendous potential to address critical short-term and long-term needs across the 
nuclear data pipeline.  To realize this potential, we have indicated the urgent need for targeted investments 
to leverage advances made in other areas of science and, simultaneously, drive innovations in AI/ML. 
Critical areas for investment include: fostering collaborations between nuclear data researchers and experts 
in the AI/ML community; collecting and sharing fitted models and data along with the relevant notes on 
applicability and limitations; developing approaches to validate the trustworthiness of AI/ML methods; 
assessing UQ contributions of these methods; and developing surrogate models to rapidly emulate the 
results of complex multi-physics codes. Throughout these efforts, the principle should be followed to 
develop AI/ML tools that augment nuclear data expertise, not replace it, and to ensure that, when necessary, 
rigorous safety protocols are followed.
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